BREAKING

Tuesday, August 30, 2016

Metode Jaringan Syaraf Tiruan: Multilayer Perceptron(MLP)

Multi-Layer Perceptron adalah jaringan syaraf tiruan feed-forward yang terdiri dari sejumlah neuron yang dihubungkan oleh bobot-bobot penghubung.
Neuron-neuron tersebut disusun dalam lapisan-lapisan yang terdiri dari satu lapisan input (input layer), satu atau lebih lapisan tersembunyi (hidden layer), dan satu lapisan output (output layer). Lapisan input menerima sinyal dari luar, kemudian melewatkannya ke lapisan tersembunyi pertama, yang akan diteruskan sehingga akhirnya mencapai lapisan output.

Tidak ada batasan banyaknya hidden layer dan jumlah neuron pada setiap layernya. Setiap neuron pada input layer terhubung dengan setiap neuron pada hidden layer. Demikian juga, setiap neuron pada hidden layer terhubung ke setiap neuron pada output layer. Setiapneuron, kecuali pada layer input, memiliki input tambahan yang disebut bias. Bilangan yang diperlihatkan pada gambar di atas digunakan untuk mengidentifikasi setiap node pada masing-masing layer.
Kemudian, jaringan dilatih agar keluaran jaringan sesuai dengan pola pasangan masukan-target yang telah ditentukan. Proses pelatihan adalah proses iteratif untuk mementukan bobot-bobot koneksi antara neuron yang paling optimal. Kata back propagation yang sering dikaitkan pada MLP merujuk pada cara bagaimana gradien perubahan bobot dihitung. Jaringan MLP yang sudah dilatih dengan baik akan memberikan keluaran yang masuk akal jika diberi masukan yang serupa (tidak harus sama) dengan pola yang dipakai dalam pelatihan.
Berikut ini adalah tahap-tahapan dalam penyelesaian masalah menggunakan metode Jaringan Syarat Tiruan menggunakan Multilayer Percepteron.
1. Identifikasi masalah
Tahap ini merupakan identifikasi masalah yang hendak diselesaikan dengan jaringan syaraf tiruan, meliputi identifikasi jenis dan jumlah masukan serta keluaran pada jaringan.
2. Menyiapkan training data set
Training data set merupakan kumpulan pasangan data masukan-keluaran berdasarkan pengetahuan yang telah dikumpulkan sebelumnya. Banyaknya data set harus mencukupi dan dapat p p mewakili setiap kondisi yang hendak diselesaikan. Terbatasnya data set akan menyebabkan akurasi jaringan menjadi rendah.
3. Inisialisasi dan pembentukan jaringan
Tahap inisialisasi meliputi penentuan topologi, pemilihan fungsi aktivasi, dan pemilihan fungsi pelatihan jaringan. Penentuan topologi adalah penentuan banyaknya hidden layer dan penentuan jumlah neuron pada input layer, hidden layer dan output layer.
4. Simulasi jaringan
Simulasi jaringan dilakukan untuk melihat keluaran jaringan berdasarkan masukan, bobot neuron dan fungsi aktivasinya.
5. Pelatihan / training jaringan
Sebelum melakukan pelatihan, dilakukan penentuan parameter training terlebih dahulu, seperti penentuan jumlah iterasi, learning rate, error yang diijinkan. Setelah itu dilakukan pelatihan yang merupakan proses iteratif untuk menentukan bobot koneksi antar neuron.
6. Menggunakan jaringan untuk pengenalan pola
Setelah pelatihan dilakukan, jaringan siap untuk digunakan untuk pengenalan pola. Kemampuan jaringan dalam mengenal pola sangat bergantung dari bagaimana jaringan tersebut dilatih.
Jaringan syaraf tiruan cocok digunakan untuk menyelesaikan masalah yang tidak linier, yang tidak dapat dimodelkan secara matematis. Jaringan cukup belajar dari pasangan data masukan dan target yang diinginkan, setelah itu jaringan dapat mengenali pola yang mirip dengan masukan ketika dilakukan pelatihan. Karena itu, kinerja jaringan pun ditentukan oleh banyaknya pasangan data set selama training.
Bila data training cukup banyak dan konsisten, akurasi jaringan akan tinggi, sebaliknya bila data training tidak memadai, akurasi jaringan rendah. Selain data training, akurasi jaringan juga ditentukan oleh pemilihan topologi yang tepat.
Proses pembentukan jaringan sangat melelahkan, dilakukan secara terus menerus hingga diperoleh jaringan yang paling baik. Tetapi setelah jaringan yang optimal ditemukan, proses pengenalan pola dapat dilakukan secara cepat, lebih cepat bila dibandingkan metoda lainnya.
Seperti yang telah disampaikan sebelumnya, bahwa metode MLP merupakan salah satu metode dari Jaringan Syaraf Tirual (JST) sangat cocok untuk menyelesaikan masalah yang tidak linear dan non deterministik. Contoh aplikasinya antara lain adalah:
  • Untuk speech recognition
  • Untuk image recognition
  • Untuk software mesin tranlasi
DaftarPustaka:
http://mail.stei.itb.ac.id/~soni/EL5133/Materi/05c-Neural%20Network-MLP.pdf

About ""

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus suscipit, augue quis mattis gravida, est dolor elementum felis, sed vehicula metus quam a mi. Praesent dolor felis, consectetur nec convallis vitae.

Post a Comment

 
made by ©cak khafid ,senin/29/2016 INDONESIA
Design by FBTemplates | BTT